Although modern science has changed the way medicine is practised in almost every field, it has so far failed to produce any radically new treatments for colds. The difficulty is that while all colds feel much the same, from a biological perspective the only common feature of the various viruses that cause colds is that they have adapted to enter and damage the cells that line the respiratory tract. Otherwise, they belong to quite different categories of organisms, each with a distinct way of infecting our cells. This makes a catch-all treatment extremely tricky to formulate.
Scientists today identify seven virus families that cause the majority of colds: rhinovirus, coronavirus, influenza and parainfluenza virus, adenovirus, respiratory syncytial virus (RSV) and, finally, metapneumovirus, which was first isolated in 2001. Each has a branch of sub-viruses, known as serotypes, of which there are about 200. Rhinovirus, the smallest cold pathogen by size, is by far the most prevalent, causing up to three-quarters of colds in adults. To vanquish the cold we will need to tackle all of these different families of virus at some stage. But, for now, rhinovirus is the biggest player.
Nicola Davison
Interesting article about a wide-spread problem: the ‘common’ cold. This large variety of viruses is probably the reason why our bodies do not build natural immunity against ‘the cold’: every time we catch a cold it’s likely caused by a different strain, one our immune system hasn’t encountered before and doesn't know how to fight. It clearly complicates the search for a cure, although internal politics at drug companies and profitability considerations do play a role, as explained later.
Though all the rhinoviruses are pretty much the same internally, a subtle alteration to the pattern of proteins on their outer shell means that, to the immune system, they all look different. It’s a cloak-and-dagger strategy, and the reason why early vaccines such as Winston Price’s failed. Antibodies produced for one rhinovirus serotype do not detect the rest. Until recently, it was believed that there were around 100 different strains, and these were grouped into the “A” and “B” families. Then, in 2007, a new cache of viruses was discovered, the “C” group, making the total more like 160.
Post a Comment